Strong convergence of hybrid Halpern iteration for Bregman totally quasi-asymptotically nonexpansive multi-valued mappings in reflexive Banach spaces with application
نویسندگان
چکیده
منابع مشابه
Strong Convergence Theorems for Bregman Quasi–asymptotically Nonexpansive Mappings and Equilibrium Problem in Reflexive Banach Spaces
The purpose of this article is to propose an iteration algorithm for Bergman quasiasymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems. The results presented in the paper improve and extend the corresponding results of Reich and Sabach...
متن کاملConvergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.
متن کاملStrong convergence theorems of the Halpern-Mann’s mixed iteration for a totally quasi-φ-asymptotically nonexpansive nonself multi-valued mapping in Banach spaces
In this paper, we introduce a class of totally quasi-φ-asymptotically nonexpansive nonself multi-valued mapping to modify the Halpern-Mann-type iteration algorithm for a totally quasi-φ-asymptotically nonexpansive nonself multi-valued mapping, which has the strong convergence under a limit condition only in the framework of Banach spaces. Our results are applied to study the approximation probl...
متن کاملConvergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).
متن کاملStrong convergence of Halpern iterations for quasi-nonexpansive mappings and accretive operators in Banach spaces
In this paper, we first introduce a new Halpern-type iterative scheme to approximate common fixed points of an infinite family of quasi-nonexpansive mappings and obtain a strongly convergent iterative sequence to the common fixed points of these mappings in a uniformly convex Banach space. We then apply our method to approximate zeros of an infinite family of accretive operators and derive a st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2014
ISSN: 1687-1812
DOI: 10.1186/1687-1812-2014-186